# 세줄요약 #
- 인간에게 치명적인 인지기능 장애를 가져오는 알츠하이머 질병을 진단하기 위하여 CNN 기반의 진단 알고리즘을 개발하였으며, 먼저 AD(Alzheimer Disease)와 NC(Normal Control)을 분류하는 모델을 먼저 학습시킨 후, MCI(Mild Cognitive Inpairment) 환자들이 치매로 전환(Converter or Nonconverter)되는지를 학습시켰다.
- 학습 데이터로는 ADNI 오픈 데이터셋의 FDG와 AV-45 PET 영상들을 사용하였으며, 이때 딥러닝은 특성 추출을 자동으로 하기에 Spatial Normalization 같이 뇌영상에서 전통적으로 사용되던 영상처리 기법들은 적용하지 않았다.
- 학습 결과 AD vs NC 환자 분류와 MCI 환자들 중 AD 환자로 전환자/비전환자 분류 모두 새로 사용한 딥러닝 기법이 기존의 특성 추출 & 머신러닝 기법보다 우수한 성능을 나타내었다(정확도 96%, 민감도 93.5%, 특이도 97.8%).
# 상세리뷰 #
1. Our deep CNN-based approach could accurately predict cognitive decline in MCI patients by combining information of FDG and AV-45 PET images.
- We aimed to develop an automatic image interpretation system based on a deep convolutional neural network (CNN) which can accurately predict future cognitive decline in mild cognitive impairment (MCI) patients using flurodeoxyglucose(FDG) and florbetapir(AV-45) positron emission tomography (PET).
2. For testing whether a MCI subject would convert to AD, baseline PET images without spatial transformation were needed as a feature extraction was automatically performed.
- Accuracy of differentiation between MCI converter and nonconverter (84.2%) outperformed the conventional machine learning approach using SVM with voxelwise feature selection as well as conventional feature-VOI based method.
- ROC comparison results also revealed that the accuracy of prediction was significantly higher than other methods.
3. Our approach could provide a quantitative variable, ConvScore, to be used as a fusion biomarker for multimodal images.
- ConvScore calculated from baseline PET images of MCI patients was significantly correlated with the longitudinal change of cognitive measurements at 1 year and 3 years.
* Reference: Predicting Cognitive Decline with Deep Learning of Brain Metabolism and Amyloid Imaging.
Hongyoon Choi, Kyong Hwan Jin, Alzheimer’s Disease Neuroimaging Initiative
Behav Brain Res. 2018 Feb 14 Published online 2018 Feb 14. doi: 10.1016/j.bbr.2018.02.017
댓글