신경망9 (작성 중...)[JIS] Deep Learning for Image Classification [JIS] Journal Introduction Summary: Deep Learning for Image Classification [Since 2017] 1. [EfficientNet] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International conference on machine learning. PMLR, 2019. 2. [NasNet] Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." Proceedings of the IEEE con.. 2023. 12. 26. 비전 딥러닝 특강 - 4-1. 비전 딥러닝 설계 / 합성곱 신경망이란? 2023. 4. 2. 비전 딥러닝 특강 - 2-3. 신경망의 이해 / 신경망의 학습 원리 2023. 2. 9. 비전 딥러닝 특강 - 2-2. 신경망의 이해 / 신경망의 수학적 구성 요소 2023. 2. 9. 비전 딥러닝 특강 - 2-1. 신경망의 이해 / 머신러닝의 이해 2023. 2. 9. [FCN] Long et al., 2015, Fully Convolutional Networks for Semantic Segmentation # 세줄 요약 # 저자들이 소개한 FCN은 엔드 투 엔드(end-to-end), 픽셀에서 픽셀로(pixels-to-pixels) 학습되어, 즉 입력으로도 '영상'이 들어가고, 출력에서도 분할된 '영상'이 나오는 시멘틱 분할(semantic segmentation)에서 가장 높은 성능을 보인 합성곱 신경망이다. FCN의 핵심은 네트워크 이름에도 들어가 있듯이 'Fully convolutional Network'(완전 연결된 합성곱 신경망) 구조가 핵심 아이디어이며, 이를 구현하기 위해서 기존의 분류에 사용된 합성곱신경망 모델인 AlexNet, VGG, GoogLeNet 등을 기본모델(baseline model)로 사용하고, 이들 모델의 학습된 웨이트(weight)를 미세조정(fine-tuning)하여 분할.. 2022. 11. 24. [Review] Belthangady & Royer, 2019, Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. # 세줄 요약 # 딥러닝은 형광현미경법(fluorescence miroscopy)에서 영상 재구현(image reconstruction)을 하는데 중요한 툴이 되고 있다. 저자들은 영상 재구현과 초고해상도 이미징(super-resolution imaging)에서 가장 최신 기술의 적용 사례들을 리뷰하고, 가장 최근의 딥러닝 연구들이 영상 재구현 연구에 어떻게 적용되고 있는지 논의하고자 한다. 저자들은 학습데이터 수집, 영상에서 보이지 않는 구조의 재현 가능성, 재구현된 이미지의 위험성 등의 딥러닝을 사용할 때의 핵심 이슈들에 대해서도 논의하고 있다. # 상세 리뷰 # 1. 서론 형광현미경법(Fluorescence microscopy)은 생물학자들에게 있어 생물을 분자단위에서 생체구조와 작동 방식을 연구할.. 2022. 10. 9. Depthwise Separable convolution이 기존의 convolution 보다 연산량이 적은 이유 # 세줄 요약 # Depthwise separable convolution 은 각 채널별로 나누어 각각의 feature map에 대해 1-channel convolution을 연산하는 depthwise 단계와 채널별로 구해진 feature map을 1x1 kernal convolution으로 하나의 channel로 합성시키는 separable 단계로 이루어져 있다. 일반적인 convolution의 연산량은 다음의 식으로 계산한다: (kernel size)^2 * (input channel number) * (input_size)^2 * (output channel number) * (output size)^2 Depthwise separable convolution의 경우 depthwise 단계에서 in.. 2021. 8. 25. 케라스 창시자에게 배우는 딥러닝 - 3. 신경망 시작하기 # 세줄요약 # 신경망이 가장 많이 사용되는 문제로는 이진 분류, 다중 분류, 스칼라 회귀 등이 있으며 각각의 문제에 맞는 올바른 손실함수를 선택하는 것이 중요하다(이진 분류: Binary crossentropy, 다중 분류: Categorical crossentropy, 스칼라 회귀: Mean Squared Error). 전형적인 케라스 작업 흐름: 훈련 데이터(입력 텐서, 타깃 텐서) -> 네트워크(신경망 모델) 정의 -> 손실함수, 옵티마이저, 측정지표 선택 후 학습과정 설정 -> 모델의 fit() 메소드 반복 호출 훈련 데이터가 적으면 과대적합을 피하기 위해 은닉층의 수를 줄인 작은 모델을 쓰거나 k-겹 교차검증과 같은 방법으로 모델의 신뢰도를 올릴 수 있다(은닉층이 클수록 추출하는 특성이 많아지.. 2020. 8. 31. 이전 1 다음