U-Nets1 [upU-net] Benfenati, 2022, upU-Net Approaches for Background Emission Removal in Fluorescence Microscopy # 세줄 요약 # 자동형광(auto-fluorescence)은 형광현미경(fluorescence microscopy) 영상에서 목표한 대상 물체를 관측하는데 장애물이 되는 아티팩트(artifact)를 만들어내기에, 저자들은 "upU-net"이라 명명한 U-net의 수정 모델을 가지고 딥러닝을 통해 이렇게 배경에서 방출된 아티팩트를 fluorescence confocal microscopy images에서 제거하는 연구를 수행하였다. upU-net을 학습하고 테스트하기 위하여 psf(point spread function)와 Perlin noise를 사용하여 실제 형광 현미경 영상과 거의 유사한 영상들을 만들어 실험을 하였고, 그 결과 배경이 제거되는 것은 물론이고 신경망이 영상을 재구축하면서 Guassi.. 2023. 2. 28. 이전 1 다음