분류 전체보기149 [Review] Belthangady & Royer, 2019, Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. # 세줄 요약 # 딥러닝은 형광현미경법(fluorescence miroscopy)에서 영상 재구현(image reconstruction)을 하는데 중요한 툴이 되고 있다. 저자들은 영상 재구현과 초고해상도 이미징(super-resolution imaging)에서 가장 최신 기술의 적용 사례들을 리뷰하고, 가장 최근의 딥러닝 연구들이 영상 재구현 연구에 어떻게 적용되고 있는지 논의하고자 한다. 저자들은 학습데이터 수집, 영상에서 보이지 않는 구조의 재현 가능성, 재구현된 이미지의 위험성 등의 딥러닝을 사용할 때의 핵심 이슈들에 대해서도 논의하고 있다. # 상세 리뷰 # 1. 서론 형광현미경법(Fluorescence microscopy)은 생물학자들에게 있어 생물을 분자단위에서 생체구조와 작동 방식을 연구할.. 2022. 10. 9. [Review] Liu, Jin, et al., 2021, A survey on applications of deep learning in microscopy image analysis. # Three-line Summary # Microscopy images typically vary in signal-to-noise ratios and include a wealth of information that requires multiple parameters and time-consuming iterative algorithms for processing, but deep learning technologies develop quickly, and they have been applied in bioimage processing more and more frequently. This review article introduces the applications of deep learning a.. 2022. 9. 27. Moen, Erick, et al., 2019, Deep learning for cellular image analysis # Three-line Summary # Deep learning algorithms are being applied to biological images and are transforming the analysis and interpretation of imaging data. We review the intersection between deep learning and cellular image analysis and provide an overview of both the mathematical mechanics and the programming frameworks of deep learning that are pertinent to life scientists. We relay our labs'.. 2022. 9. 19. de Haan, Kevin, et al., 2020, Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy # Three-line Summary # In recent years, deep learning has been shown to be one of the leading machine learning techniques for a wide variety of inference tasks. In addition to its mainstream applications, such as classification, it has created transformative opportunities for image reconstruction and enhancement in optical microscopy. This article provides an overview of some of the recent work .. 2022. 9. 12. Chamier et al., 2019, Artificial intelligence for microscopy: what you should know # Three-line Summary # Artificial Intelligence based on Deep Learning (DL) is opening new horizons in biomedical research and promises to revolutionize the microscopy field. We introduce recent developments in DL applied to microscopy in a manner accessible to non-experts. We discuss how DL shows an outstanding potential to push the limits of microscopy, enhancing resolution, signal, and informa.. 2022. 9. 2. [DECODE] Speiser, Artur, et al., 2021, Deep learning enables fast and dense single-molecule localization with high accuracy # Three-line Summary # Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. We developed DECODE (deep context dependent; using deep learning), a computational tool that can localize single emitters at high densit.. 2022. 8. 29. [U-Net] Ronneberger et al., 2015, U-Net: Convolutional Networks for Biomedical Image Segmentation. # Three-line Summary # We present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. Using the network trained on transmitted light microscopy images, we won the ISBI cell trac.. 2022. 8. 11. [BGnet] Mockl et al., 2020, Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet # 세줄 요약 # 형광현미경법에서 연구자가 원치 않는 임의의 공간 형태에서 나오는 배경 형광은 광학현미경 영상의 품질을 저하시키는 주요 원인 중의 하나이다. 저자들은 현미경 영상에서 배경을 빠르게 추정하여, 영상 내의 포인트 소스(point source)를 뛰어난 정확도로 측정하기 위해, 깊은 신경망(deep neural network) 중에 하나인 U-net 형태의 구조를 기반으로 하는 BGnet을 개발하였다. 저자들은 잘 학습된 BGnet으로 배경을 측정 후 제거함으로서 영상 내의 다양한 PSF(point source function)들을 추출할 수 있었고, 이렇게 배경을 제거한 영상들을 사용하여 정밀한 생체구조를 볼 수 있는 고품질의 초해상도 영상을 재구현하였다. # 상세 리뷰 # 1. Introd.. 2022. 7. 19. [ANNA-PALM] Ouyang et al., 2018, Deep learning massively accelerates super-resolution localization microscopy # 세줄 요약 # 초고해상도 현미경법(Super-resolution microscopy method)의 영상 획득 속도는 단일 분자의 위치 결정(single-molecule localization)에 영향을 받게 되는데, 예를 들어 PALM과 STORM의 경우, 한번에 약 수십개 정도의 적은 수의 분자들만이 관측되는 단일 분자 영상 수천장을 합성하여 만들게 된다. 저자들은 최근에 컴퓨터 비전 분야에 각광받는 인공 신경망(Artificial Neural Network; ANN)을 사용하여, 훨씬 적은 수의 단일 분자 영상들과 widefield 영상를 가지고 초고해상도 형광현미경 영상(fluorescence image)을 재구현(reconstruction)하는 ANNA-PALM 모델을 소개하였다. 이 ANN.. 2022. 6. 22. 심상희, 2018, 단일분자 위치측정을 이용한 초해상도 형광 현미경법 # 세줄 요약 # 형광 현미경은 형광물질의 방출빛 만을 선택적으로 검출함으로써 높은 감도로 특정 분자만을 선택적으로 가시화할 수 있어 현대 생물학의 필수도구가 되었으나, 단일 분자의 경우 가시광의 회절 무늬보다 훨씬 작기 때문에 단일 분자의 이미지는 광학적 회절현상으로 결정되어 수백 나노미터의 회절 무늬를 가지는 한계가 있었다. 그러나 이미지가 겹치치 않을 정도의 소수의 분자들만 일시적으로 형광을 켜고 끌 수 있다면 이들의 위치를 정확하게 알 수 있으므로, 빛에 의하여 끄고 켤 수 있는 유기 염료나 형광 단백질을 사용하여 분자들을 끄고 켜면서 정확하게 그 위치를 측정하고 전체 구조를 초고해상도 이미지로 재현하는 형광 현미경법을 STORM(stochastic reconstruction microscopy).. 2022. 6. 15. 이전 1 ··· 3 4 5 6 7 8 9 ··· 15 다음